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SUM4vARY

A re.port,. PIBAL number 167, was written by Salerno and

Levine on the buckling of cylinders and titltd NtDuck!1.ng of

Circular Cylindrical Shells w1th Evenly Spaced, Equal Strength

Circular Ring Frames. Part I."

In discussii., that report Dr. Keimard pointed out certain

apparent inconsistencies in theory.

T " p..._t•..... r b he material presented ir. PIBAL
Ap_

* 167 is discussed together with the remarks made by Dr..

Kenna~rd. It appears that some of the theory presented in PIBAL

167 is open to question but, nevertheless, t.e conclusions

obtained therein hold without modification.

This report is divided into three main parts.. In part 1

is presented some material on the theory of instability, and

some of the quantities contributing to the total potential energy

for the current shell problem are derived in detail. In part 2

is discussed the ussential differences betweieh the work of

Salerno and Levine and of Kennard. It is shown that although

some of the work of the. former authors is open to question and

to criticism the terms repreq~nting the difference between their

work and that. of Kennard malce no essential difference to the con-

cluding eigenvalve-formula. In part 3 the etffects of tha terms

in question in both treatments are traced and considered in de-

tail. As one conclusion it appears that certain terms proposed

Dy Kennard, although aamissible, lead to a result different from

that obtained by Bryan for the limiting case of an infinite

cylinder.



LIST OF SYABOLS

R " radius of middle surface of shell

h = thickness of shell

L = distance between ring frames

L 0 = L/R

V = volume occupied by shell

E - modulus of elasticity

v = Poisson's ratio

Xts = axial and circumferential coordinates

= angular coordinate circumferenti ally

= x/A

u,v,w " displacements of shell

X - curvature

X change in curvature

a IL stress

e = strain

NXXNss N X3- stress resultants per unit length

M1xXMssMXs , moment result-ants per unit length

p = radial pressure

P axial pressure

Ub =strain energy arising from stretching of middle surface

Ub strain energy arising from membrane shear stress

.U c strain energy arising froni bending moments and torquesc

induced in change of state

'd = strain energy arising from work done by external force

system
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U = strain energy stored in the reinforcing rings

W2 = work done by radial pressure

VI = potential due to axial pressure

a = number of half waves circumferentially

n number of half waves axially

X nnlR/L

RhRACRC a ring parameters

•D I - pR/K

( 2 ., Ph/K2

k h 2 /12R2

K - Eh/(l-v2 )

C1 ..... C, = coefficients arising in expansion of determinants



PART- 1. ENERAL THEORY

1. Instability Conditions.

We consider a closed, right circular cylinder in an initial

state of zero stress. The cylinder is assumed to be very long

in comparison with its diameter, and to contain many similar bays

formed by a set of equi-spaced internal circular reinforcing

rings.

Let this shell be now loaded by an external hydrostatic

force system. We desire to compute the magnitude of the pres-

sure at which the cylinder will buckle between adjacent ring

frames.

(i) Let the hydrostatic load system be applied to the unstressed

shell in such a manner that, although on the point of buckling,

the cylinder has not actually buckled. Let the associated hydro-

static pressure be p.

We will call this stressed state the state Ak. It is an

equilibrium state.

In the usual theoretical approach to a shell problem of the

Ssent type it is generally assumed that the cylinder is com-

pressed uniformly by tho hydrostatic pressure before the rein-

forcing rings are positioned. Thus in state A cylinder generators

are straight.

(ii) Now, without alteration in the magnitude of the hydrostatic

load system, we enforcu a si.eall change in the shell shape so that

it takes on an adjacent bent shape. We will call the associated

stress-state state B. In state b the generators are no longer
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strai-rnt.

Such an adjacent deformation could be induced, for instance,

by the action of a small additional force system acting normal

to the circumferential wall 9f the shell.

If, en the removal of this small additional force system,

the shell remains deformed in the adjacent configuration, then

we say that the hydrostatic pressure p is the buckling pressure

for this shell structure.

For the buckling pressure p, state B as just described

(with the small additional force system removed) is also an

equilibrium state.

(iii) Let the total potential energy (i.e. strain energy minus

work done by external loads which are assumed as constant in

going from initial to final deflected shape) associated with

state A be TI
A

Let the change in potential energy in going from state A

to state B be IIB.

Let the total potential energy in state B be II, measured

from zero stress content.

Then, since state B is an equilibrium state, the Potential

Energy Theorem of Elasticity states that

n -= A,+ nB

is stationary, Hence, for small variations in disnlacements

6(n+A 0 .
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But IA is als an equilibrium state, so that

61A = .

Thus, for p to be the buckling pressure, we require

6rB = o. (1)

(iv) We can obtain another result from a slightly different

viewpoint. We know state A to be ai equilibrium state and, for

the p associated with state A to be an instability pressure, ve

csk for the existence of a neighboring stati which is also an

-.-.ti]Abriun. -tate under thf, action of the same load systenL. For

.3 tG 'oe s c,ý change in potential eiaergy in going from state

r co state . i:.it be zero. Hence

11 o. (2)

We shall use condition (1) as the criterion by means of

which we will evaluate, approximately, the buckling pressure p.

We could equally well, of course, use the criterion

6L - 0.

2. Potential Energy.fl.

It is convenient to consider the strain energy of tb-! stress-

ed shell as consisting of various contributions: those due to

middle surface stretching and shearing, and those due to bending

and twisting. To do this it is necessary to be able to write

down quantities representing changes in curvature, etc., in going
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from state a to state B.

It would, perhaps, be better to consider the strain energy

in a purely formal manner, and write it as

Be = v .cijeijdV (iJ, 1,2,3)
2 2

wh1 ere the usual summation convention is implied, and

Cii = Cij )

via the stress-strair relations. To do this, however, would

require a detailed knowledfp of all the strain components

throughout the shell wall expressed in terms of displacement

components. This approach has not been used in PIBAL number 167,

and so will not be used here.

The potential energy, then, will be taken to consist 3f

five contributions:

(a) That ariaing from stretching of the widdle surface in going

from the "plane" state A to the adjacent "bent" state B. Stipu-

lating state B to be an adjacent state implies that it is very

close to state A even though the deformation pattern is different.

As such it is assumed that the changes in magnitude of the normal

membrane stresses are small in comparison with their magnitudes

in state A, In fact, frequently it is assumed that the normal

membrane stresses remain constant in going from state 4 to state

B. We do not do so here, however.

(b) That arising from membrane shear stresses. In state A - a

state of" unifora± oompression - the membrane shear stresses are

zero; in state B they are finite though snall, Hence, in com-

puting the m:embrane shear stress contribution to r131 cognizance
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should be taken of this growth. The strain energy contribution

will be

Us= ½2 (shear stress)B(engineering shear strain)B dV.
V

Again, as with the variation in the normal membrane stresses

in going from state A to state B, frequently this quantity is re-

garded as small in comparison with "B and is neglected. Never-

theless, we will retain this term.

(c) That arising from bending moments and torques induced in

the change of state.

(d) That arising from the work done by the external force system

while the structure deforms from the "tplane"f state to the adjacent

"bent" state. During this deformation the external hydrostatic

pressure remains constant in magnitude (and even if it did not

it would be assumed that it did), so that the work done is equal

to p times the change in volume occupied by the shell.

(e) Strain energy in the reinforcing rings.

3. Computation of _'otential Energy Contributions.

Since we only are concerned with state B it is convenient

to take stressed state A as datum for purposes of measurement of

the additional displacements involved in going to the "adjacent"

state. Accordingly, we assume that in state A the cylinder is of

radius R, wall thickness h, and is of length L center to center

of ring frames.

Let u,v,w be the displacement components in state B measured

from zerc in state A. These displacements are taken as positive

according to the scheme
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u in the direction of x increasing,

v in the direction of s increasing,

w in the direction of' r increasing,

where the coordinate system x,s,r is as shown in Fig. 1. As can

be seen, w is thus positive when measured in the direction of

the inward normal to the shell curved surface.

Let the energy contributions associated with (a), (b), (c),

(d), (e) of §2 be Ua, Ub, Uc, Ud, Ue, respectively. Then, with

barred quantities denoting the stress and moment resultants (per

unit length of arc on the middle surface of shell wall) existing

in state A, and unbarred quantities denoting the changes in

those resultants in going from state A to state B, we have:

(a): Ua ;^(TXeXX+R 5 e5 ) dA +..j'(N e +N e 8 )dA, (3)

where

constant

IT XX - constant ,

fN,, NX(exx)

L ss-- NssLess),

and the region of integration A is the surface area of the cir-

cumferential "middle surface" of the shell wall.

(b): Ub J, 'JN 8ed4 (6)Sb A X5½

where

NxS Nxs(Uxs) s (7)
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and e is the engineering (i.e. not the tensor component) shear

strain at the middle surface.

(c): uC (M(xxx * Mss'ss + Yxslxs)dA (8)

where

V xx - Mxx(lxx'ss) ' etc. (9)

(d): Ud - p.AV (10)

where AV is the decrease in the volume occupied by the shell in

going from state A to state B.

(e): vie will not consider Ue in detail in this paper.

. Detailed Computation.

From static considerations we know that

Nxx = - Rp/2 , i.e. compression,

Rss = - Rp ,

where as usual p is the applied hydrostatIc pressure.

Also, from the strain-displacement relations for a circular

cylinder, we have that

ex = 2 (•) U

wV 1 w) 2

a 2 as(L• 1 (12)

e (wNw+InV)+aW
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In addition, we have the stress-strain relations

Oxx = [E/(l-v 2 )](e xx + vess)

a s= CE/(l-v 2 )](eso + Ve xx)

CYXs [Lr/2(l+v)]exs *

so that the stress-resultants are given by

NXX =E/(1-v 2 )](exx + vess)

iss =[E/(1-v2)](ess, V+ Vxx) , (13)

Nxs =Eh/2(l+v)]e •

Substituting (12) into (13) then gives the stress-result.-its in

terms of displacements.

In the second integral in expression (3) we normally disre-

gard terms of degree higher Zhan the second so as to obtain a

linear problem when finding approximate solutions by means of

the Rayleigh-Ritz technique. On so doing, we obtain, therefore,

Ua = (Rp/2) ,'{ux + 2vs - 2(w/R) + (1!2)wx? + vs~jdA

+i'Eh/2(1-v 2)J]X•uv 2+ Vs(w/R) 2'2v (w/R)+2v(uxvs-ux(w!R) )}dA

(14)

where now for convenience we use the notation

- duux etc,
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For Ub we haves

U (1/2) PA N e dA
b ~ A Xs XS

(1/2)[Eh/2(l+v)J J' (us + vX * WxWs)wdA 2(15)

A
(1/2)CZh/2(1+v)j J (us + v, X 2 dA (15a)

on neglecting terms of degree higher than two.

To conpute U we need expressions for the quantities x xx,c

in terms of displacement components u,v,w, and quantities Mx,..,

in terms of curvatures or displacements via stress-strain rela-

tions. Since these terms have not been mentioned in the discus-

sion by Kennard we assume the results of PIBAL number 167 without

comment or elaboration (PIBAL number 167, page 4), and so have

Uc = (D/2) 1 {()x t Xp)2 - 2(l-v)(Xx - f 2 ))dA

where

XX = WXX

X, = w8 5 + wlR2

f - Wxs + (vx/2R) - (uI2R)

Hence

U [Eh 3 /24(1'v2) ] P (w. + W. + w/R2 )2

C SS

- 2(1-,v ),"w w5 • • w.wxl/R - (W + v./2R- u/2R)2 JldA.

(16)
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To compute Ud the contributions from the end forces and

from the radial forces will be considered separately. We note

that the end thrust produces (among other things) a stress re-

sultant Rxx of magnitude - Rp/2. If, now, we consider an ele-

ment of the curved surface of the shell, of length dx afid (circum-

ferential) width ds, and defined longitudinally by the two points

AB as shown in Fig. 2, we have:

displacement in x direction of point A uA,

displacement in x direction of point B = ue+duA

Hence, for the element in question, the work done by N-xx is given

by

AUde - (Rp/2)[uA - (uAeduA)Jds

and so

Ude = - (Rp/2) U uxdA (17)
AX

In passing, and although not strictly relevent here, we note

that if the cylinder were short and closed at the ends the work

done by the end thrust would be

x=o
U de ' P - Cuu. dA.

end x_

For the second contribution to Ud we note that if any

normal force p at a given point on the curved surface of the

shell moved with the point during the displacement of the point

on taking up state B, then (and as is usually done in-Elasticity)

the work done by such a force at that point wouid be, simply,

I~dr t*p w
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Following Kenlard*, however, we consider this matter further.

•.Work done by Late~ral Hydrostatic Pressure,

In more detail, we consider a point 0 located on a lateral

surface generator in state A, and displaced to a position D in

state B, Fig. 3. Let D' be the projection of D on the generator

passing through C. Then, If the normal applied force moved with

0, its normal displacement would be wc. If, however, the force

originally at C remained in that same position and did not move

with C, its normal displacement would be [wivc. This we can take

to be the situation as far as the lateral surface hydrostatic

pressure is concerned. From Fig. 3, on allowing for the circum-

ferential displacement vc of point C (not shown on the figure),

we see that to within a first derivative correction [w]c is given

by

[w)c = Wc - uc (WX)c , vc (Ws )c

Using this result we can compute the change in volume of a

cylinder of original radius R and length L. The original volume

is IIR2dx , The final volume is
0 L 211V =o 0 (l/2) ER - (w - uw -vws)] dld

0 0

or

V = IJ{(l/2R) j' 2 R1 - (w - uwX -_w 5 )J 2 dsldx
o 0

* Kennard's discussion on PiBAL number 167 is included for con-

venience in this retort as Appendix IV.
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Thus the change in volume Is given by

Vfw ý (w2/2R) - uw - wd

where terms of degree higher than the second have been neglected.

Hence we see that the work done by the radial forces is

Udr pJ~fW- (w2/2R) - uwx - vwsdA , (18)

where, as usual, A is the area of lateral or curved (middle) sur-

face of the shell in state A.

To all the foregoing we should, for completeness, add energy

terms due to strain in the end reinforcing rings frames. This

we will not do here, however; and, when such terms are req-yire4

we will take them direct from FIBAL number 167.

With the above material as framework we are now in a position

to discuss material contained in UIBAL number 167 together with

the remarks on that material by Dr. Kennard.
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PART 2. DISCUSSION

6. Quantity (Ua-Ud) derived here and by Kennard.

In his work Dr. Kennard obtained some energy quantities

which differ from those given in PIBAL number 167. Essentially,

the differences occur in the energy contributions Ua and Ud. We

consider, then, the quantity UaUd.

From (14), (17).and (18) we have

Ua-Ud = -(Rp/2) jfux÷2v-(2w/R)+(w 2/2)+Ws21dA

+LEh/2(l-,v2 )] X•Af•u+vs(w 2/R 2 )-(2vsw/R)+2v(uxvs-u w/R)ldA

+(Rp/2) UxdA•(I•p/2) XL(2w/R)Iw2/R••)-(2uwx/R)-(2vws/R)1dA.
A

Further, we note that v i.s periodic in the circumferent;al direc-

tion, with a consequence that J' v dA has magnitude zero. ThusA
we have

Ua-Ud = Rp •{¢w'12R )÷ uwxIR)+ vwlR)-( wl/4-(i12 ))bdA+(A ,b

where
(AU [Eh/2(l-A J ]/{,+V2+(w2IR2)-(2vsw/R)+2vuivs-(2vuxw/R) dA:

lb A

(19)

This is the result obtained from the foregoing considerations

only.

On making obvious chanpas in notation, exoression (19) is

in complete agreement with the corresponding exnressiun (C) given

by Kennard.
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7. wuantity (Ua-Ud) obtained from FIBAL number 167.

After a little manipulation the quantity (Ua-Ud) obtained

from the work in PIBAL number 167 is given by

Ua-Ud = ,.pA C(w/R)+(w 2/2R2 )+(w wss/2)-(w ux/2R)

- (WX2/4)VX2/4)-(uX2/4,4dA + (AU ) (20)

NQte that as written here this is not the expression (e')

quoted by Kennard in his work as the PIBAL result in question.

It should be remarked here that in (19) no account has been

taken of the membrane shear stress contribution Ub. On the other

hand, as obtained from PIBAL number 167 as will be shown shortly,

(20) comes from (but does not include) quantities which take into

consideration such effects,

FrQm a comparison of (19) and (20) there are obvious dif-

ferences, and it would appear that the latter expression is in-

correct. Nevertheless, although a portion of the theoretical

treatment presented in PIBAL number 167 seems in error, it will

be shown later that the results and conclusions given in that

report remain essentially the same as those obtained from (19).

Before doing this it is of interest to discuss the deviation of

(20) further.

The PIBAL number 167 equivalent of (20) is made up from

equations* (7), (') and (r) of that report. For completeness

*The numbers of the fIBAL report equations are here shown as

barred numbers for clarity. In that report the numbers are the

same but they are not barred.
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they are repeated here.- We have

(i) B h,12(l- v4 , I'L t + vk -w)' 2  (v u ,w) + (1- v)& +u P/2 d d4

where

Ue is "the energy of stretching",

- x/a or, in our notation, w xlR,-

L - L/R;

(ii) V .- (Ph/2)j £ (u 2  ÷ 2  )d~d• , (f)

where

V is the "potential caused by axial pressaure", and, on interpretation

of quantities given on Pibal pages 17 and 19.,

P pR/2h,

and on pa•e 9 of the Mab1 report P is defined as the "axial pressure";

2n L

2 ( i - 2If

where

W is the "v~ork done by the radial prebsure."

Vie note that (3) as just presented and as used in Piti. number 167

represents the total strain energy due to all rienbrane strassus, i.e. shear

as well as nrmwl, and a4 s.ie that VI as defined abovt, Lu the negative of

the work donb b,- the preaisure actirn on the ends of the y.linder,
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in virture of the definition of Ue just Riven, it followis that Us

represents mr ekxre.sion (Ua + Ub). In consequence of this, and the fact

that Ub 4e not present in (19), it is convenient to write Ue as

us - U + UUe e + e

2

where 2 -M L ̂ W)
u0 " [h/2 (1- ) P x C-+)v +iv.0  9 W d& /

0 0 E, (

2

To transform these to our notation we use the substitutions

3,ux/R., s R p ,

from which

and, on noting that L - L/R, it follows that0

ue - [Eh/4(1+ v J' J (v ) + Pt a )2 dx•d

0 0

= b •

Consequently, in obtaining (20), i.o. the equivalent of (Ua - Ud)$

we Dist uso U e inatead of Ue
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Using the same transformations for T. and qr we obtain for U the81

expression

.2211R L -)dd/I %. " X

. 1I1/2(tv .l )a. , +. +,2ivv5  v}-2+ 2v 12uvde

In sinil3r manner we can compute V - 2 ' noting that se require this

diffdrence s.rice V is the negative of the uork done by- the "end force".

We have
LO) O2 2 2 dr

-w IW (P \tll?+V4-0;%.'I-
00

(1L/2)j si pm [j2.+ i-axx )/Ft !dx dcp
0 0T

and, on noting that

Ph/2- (p/2.h)(h/2) . p R/4

this becomes

27R L
V -W um.--(PW/4) f {(Rux)' + (Rv)x2 + (Rw,)2Jdxdr/R2

2nR L

S(1/2) f J pw (2 +u - (W + .. v, )/R. dx d,

n.R L
' .PR .i U 0L2 X

L 2
Pr, (uS A - ,2,11)-,+ 12R )+ (r.w*e/2)}
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Thus, on roimiparison we see fiiailly that (21) is the be;:e as

Al I)b of (20) and (22) 16 the same 3a the cmantity iudar the integral

sien in (20), so that the quantity Jrom Pih)al numbdr 167 to be compared

vith (U3a-Ud) tr.wly U I+ V - 11 . is riven by (20) as was state~i.

8. )!otivatlon of durivation in Pibal number

As the authors of Mibal report number 167 are now not available, it

cantiot be stated with any certainty what mere the bases on Mhich the

expretstlonu contributing to (20) were darived,

it is conjectured that for U of Pibal number 167, that is the energy

contributions frorn all ienmbrane stresses, only the second integral term

in (') was used instead of the full tw.-termn expreEssden of (3); in addition,

of course, the quantity Ub as given by (6) Aas also used. The second term

of (3) rerpesents energy due on).y to the c•0•ng• in ragnitudo of the normal

mumbrane streseus in going from state A to state 13, and the Ue of Pibal

nmber 167 apprently nig3vsc s the uxftstonue or normcal membrane stresses

already presuit in state A.

In the exprea.sions for thti vo& dorne by the end forces, the Pibal

nunmer 167 expresslons can bn derived by assuning that the complete non-

linear strain etxprecsion, n~.nely

,,.( + ,i+W
2)/2

holde, and then by impouirng th,3 condition that tho buckling, process is

essentially inextensional, i.a. oxx m 0, etc, It is usu..115i considered
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tla enox-4 n~ ens2 2 2 adithat the nont-i.ner terras u., v arr of highir order thWn W and in
baethe Pibal report all terms arlsing £rom theiu were subsequently eliminated

from the final results. That this was the ma'nner of dorivation in tht Pibal

work is again pure oonjacture.

The Pibal expression for the work done by the radial forces, i.e. (r5), In

is open to criticism in that it seems that to compute the local change in in

radius of the original circular cylinder the radius of curvature. of the The

deformed cylinder (state B) was used. If this was so, it is incorrect.

Y Effect of errors in original derivation.

Having obtained (20), and discussed the possible manner of the original

derivation of that expression, we now consider the difference, D say, be-

tween (20) and (19). "Iriting
weon

D - (19) - (20)

we have

D R Up {(w uX/2R) + (V2/1+)+( uý/4) -(r. vs2 + A/l
A

+ f(u + , . j
X. ( /R) + (u w/R) - (r;/2,) JdA

•he2
"whore the quantity in the first set of cltay braces consists of the terims

left from Pibal number 167, and that in the second s9t, of curly braces is

from Kennard's work when terms common to (19) and (20) aro cancelled.
and

As vuiU he discussed in detail later, in the first q uantity certain

indtvicmal Itrms are subs&.uuntly neglected in Pibal number 167 on the
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basie of a omiaine8s arumont. The terms so na,!Icted aro

Y, u, 2R, V

In a similar mannur, that is for compirable accuracy (again to be discussed

in detail later) t.o tmers in the second quantity can also be neglucted.

These are

UWx/R, vWs/R •

Thus, essentially, the differenco betweon (19) and (20) is given by

D -(Rp/2) r w~ w + W _2w/R dA 1 23)
A Lis s

From Pibal nun~ber 167 the chosen displacement coefficient functions

were

u WAcomCo co* s, =ACos (ms/) cos (%X/R) ,

v - B sin mcp sinX 1. sin (ms/R) sin (x!/) , (

,A = C cos zn. sinA m C cos (rs/ra) si (k,./l) ,

where m. is the number of curcumfSrential half-,waves.,

X 0 11 TE/L,

and n is the number of h.if-vavws In the axdal direct.t.

Substituting (27) in (23) we obtain thu rsult mnntioncd eirlier,

D (Rp/2)2[ + "I-, inR I. -, 0 (23a)

This is discossed in mora detail in Appmendx ITI.
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Thus we concludu that, although in no way a justification for the

theoretical treatment given in Pibal numbur 167, ancf dtoponding on a smallness

argument still to be presented, the simplified formula (4S) given in the

Pibal report stands. The foiriule is

• z-vg/(m2+ + Re" + k(M2 ;X2)

1 (2-1- + X2 /2)

where the various quantities and symbols concorrsdwil! be miuntioned. in

detail later.

It can further be stated that the numtrical work relating to Mial

number 167 was baeod on ecuattion (4).

Thu energy terris of Pibal number 167 t~ere used in other Pib•al reports,

namnely Pibal numbers 169, 177, 182 and 189. These reports oxtund the

previous 'work by considering other shell constraints at the frames, by

discussing various aspects of shell behavior and (in 189) by considering

the ovorall buckling of a reinforced shlll oetween hulkh:irds. In all

reports deflection functions are used which satisfy eqt~tion (23a).

Smallness arguments sirmilar to those presented here are used in these

reports in the dchrivation of thu simplified formulas which wer'N used for

numnrical calculetions. On this basis it seems that the working formulas

and num.,rical work of the Piabl reports using tUhu onergy e.prtssions of

Pjbal numbur 167 are valid.
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Pa• 3. DETFCTIDE VGRK

10. Essential steps in obtainf '-•i ) of Pibal number 167.

Having shuwn that, on neglecting certain terms, the main result

obtained in Pibal number 167, namely (4), still holds, we now discuss

the justification of the approximations resorted tp. To do so it is

necessary to outline the work presented in the Fibal report.

In the main body of the present report it has not been emphasized that

the cylinder being considered is reinforced with ring frames and, in fact,

expressions for the strain energy in the rings have not yet been given.

These we will not discuss here. We present, instead, the complete expres-

sion for the total potential energy as used in Pibal number 167. Note that

this includes the supposedly incorrect contribution (20). Consequently,

after discussirn the methodology and manipulsation used in the Pibal report,

we aill then draw corresponding conclusions obtainod on using (19) instead of

(20).

From Pibal number 167 wie have for the total potetuial energy ti i expres-

sion

UT " Ue + Ub + Ur + v I V

where the individual contributions U V are given by

(Z) and (26) respoctively. Here

UT - total "potential", i.e. total pot.sntial untargy,

Ue - "strain anergy of stretching", i.4t, membrane strE.sses strain energy,

Ub 11"•rain energy of bending',

Ur "energy stored in a ,ing",

V1 . "potential caused by the axial pressure",

V - "potential energy due to the radial pressure",
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In Pibal rumber 167 the work thcn follows the uqual uiotivation of

the Rayleigh-Ritz process for computing approximatIons for aigenvalues.

The chosen displacemont functions (r?) are insuirted in (3) and the indi-

.atod integration carried out.

Conditions n6cessary for rendering UT stationary, namely

au T/a A -a a T/d B -adUT/ CO - 35

aru then imposed. Those lead to a set of three simultaneous, homogeneous,

algebraic equations linear in A, B, C. For a non-trivial solution to exist

the familiar condition that the determinant of the cofficiunts of A, B, C

set be zero is then used, which loads to the eigenvalue detexminantal equa-

tion (T9)., namely

+ R A- X2j 1+ RAC + 01 x/21
A 22

"I -! ) X km} + --0A-] t

RAC+ 1X2

It is then shown in Pibal number 167 that, for a cylinder for which

the distance betweon adjacent ring fran•s becomes largo (-* ), the solution
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of (39) yields the classic Bryan solution Lor an unstiffoned cylinder$

p _(mn2 _-ýi1/2(._V2)~ * (ý)

In this treatment various qvantit.its vrve introducdd, in particular

ve have

K. - h/(1- v2) k n. h2/m2R 2 ffi)

0 1. p R/K ( _ pR(j-V2 I/Eh)

%- PhK ( - pR(1-v 2 )/2Eh)
2

for the hydrostatic loading case discuoscd h•.',, so that

® /2... (4-3)S 2

As mentioned in Pibal numbas, 167, "the complete expansion of the
determinant (39) leads to a cubic equation in I a nd D2 ." Consequently

as a first approximation (see Appendix 1), in the expansion powers and

products of 1, P and k greater than ths first can be niglected.

This leads to tho approximate expansion

C DC k-C I + , (4)1 2 3 I C2()

or, using (73),

C,+C k - (C3 + 04 /2)cr, .. (l

Expressions for C ,...., " are piven by (Z-a),..., (Zd) of Pibal
1 4

number 167. On inspvcK on of these it is apparent that for m large (e.g. m > 8)

each expris&ion contains on( turm dominant in comparison rith the remaining

terns of that expression. This dominant term is independent of the ring
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paramuters. In thu exprcssion for C therm also occurs a sucond

dominant tearm. of sisilar m,gnitu'ie but involving the ring param'Jter R

If only thb• dominant terms are retaintd and used in (74) vi obtain,

finally, the appr-xim-te rosult (Z8). Further, if in this equation the

term containing the rine p.•riwmt.ar is dIol1tud, the simplified von Hises

result follows, (4). Actually there is a small discrepancy hero, for

in lieu of the dor~ominator term (m.2 -3. + (X2/2)1 of (45), the von Micest

re,•tit neglects the -1 contribution in comparison with A11 •

ii. Justification or ntglect of certain small Pibal terms.

The foregoing discussion retraces the main steps taken in Pibal number

167 in obtaining (48). In the process many small quantities were neglected,

Among them are terms related to the terms mentioned earlier, i.e.

w u,2R, v,21 A u2,4 •
X

We nov, discuss thosu thrue terms in more detail.

If (39) is vritten as

=ij o , iqj . 1,2.3

It, is easy to trace the C ollmwini- connectionsl

(i) In a the quantity X2 q, comas directly from thb term u2 of

11 2 2
(F), that is from u• ,

(ii) In a22 the quantity k2% comws directly from bhe tam v2 of
22 2

(s), that is from v

(iii) In a 13 and a the quantlty X4 /2 cowes directly from the term
13 I31

w u /2 of (26),p that is from r) U /2R*
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Further, it is simple to show that the R term drops out from the

denominators of the terms u 2  v2

X x
In the expansion of (39) these three quantities lead to terms in

I and 02 of degree higher than the first (and so can be neglected)

and to contributions in the non-dominant te*,s of C and C . They
3 4

make no contribution to the dominant terms retained in deriving (4-8).

That this is so is shown in detail in Appendix I.

12_ Eigenvalue Dfterminatt for the Kennard Energy terms.

Having discussed the technique and reasoning used in Pibal number

167, me now apply the same thoughts and d- nore of approximation to the

energy quantities deduced by Kennard.

For the total potential energy UT we have

UT-US+ Ub+UO -Ud +U

where

Ua is the enurgy due to the normal mambrane stresses, (14),

Ub is the ener(y due to the shear mumbrane stresses, (15a),

U is the energy due to the moments, (16),c

Ud is the work done by the external force system, (17) + (18),

U is the energy dut to ring deformation, (1).

Thus, in this UT we use expressions from Pibal number 167 for U. and

U , after transforming them to x,s coordinates.
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On following the procedure prescribed in~lOs in lieu of (39)"we obtain

tho deterndnantai equation

f% h 2 m plte(-v)(lik)/2 -Xm f(+v)k(le -V) o /2 judr V .tXmt(]oV)

+* ~Al + RAC + A

-Xiij(l*V)_k(l.. V) /2 [n2 .(lV)(2*k)%2/21 .-ji+ It o+k X2Cb.v)J

jXv-k Xjn2(j_~V) .-41+0~ +kAI(-v)J fI,+k .&M 2 .X2) +2,l 2n2  2 VX

+RAO ~ I+ fie - (Mn2 .1+ X2/2)0 1
(24)

The complete texpansion of (24) leads to a quadratic equation in ID1

and % .where thoso quantities are the sarno as previously defined.

Again, as a first approximation, powers and products of 0 1 and k can be

neglected in the expansion aid, so doing, we obtain

C5+ C6k-C7 91 9 (25)

Here C and 06 are nan coefficients corresponding to C! and C 2 of Pibal

numbor 167, and the, rnm coefficiont C takes the place of the previous

(C3 + C4 /2). Expressions for C5 , 06 0 C7 are given in Appindix 2,

As before, on inspection of thaso expressions it is apparent that for

m large (> 8, say) each one contains one dominant term which is indopendent

of the ring paramrters, and in C there is also a second tcrm of aimilar
5

magnitude involving the ring para otar R . Further, it can be suen that
C

these dominant tervis are tho ,camo as those in the expressions for C ,. ., C

Again, on retaining only the dominant terms in C , C , Cs , (25) loads

directly to the pr)vious roevalt,(48),
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13. Justification for ne_,&ct of certain sogl. Kennard terms.

In the immodiately prmcuding durivati on of (4) many quantities

have buen naglectud. Among those so treated are quantities arising

from the terms

uwx/R , vS/RA

As before, fe now discuss these two terms in detail.

If wo write (24) as

I bjjj , 0.ij 1,2,3,

it is a simple matter to trace the following connections:

(i) In b and b tlh csantity )4 combs diructly from the term u w1/R ;
13 31 1

(ii) In b23 and L32 the quantity m I cotbs diructly from the term v w/R•

In the oxpansion of (24) these cuiuntities leoad to second degree terms

in II and t (and so can be nogluct4d), and to contributions to the non-

dominant terns in C . Thoy make no contribution to the dominant terms7

retained in deriving (3). This Is shown in Appendix In.

IL. The Kennard Do orminant and the Brya_ SoJution.

?Te consider, now, tho affoct on tho Konnard dstonrin.ntal equation

(24) of allowing the dicstance between the ring frrams to becomo largo.

On lotting L --)o. or, what in th6 same thing, X -o0.O in (24) we obtain

,,M2[•..,, (1 + q•+ 1 (1Z) + k(I.2-1)2 0

(26)
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If we expand this, ndglect I in comparison with 'b , Pnd substitute

for tD in terms of p,, we obtain

p -f2 - 3 +/m .11 h3/J.2R3 (1_ V2)}

which is not the Bryan solution (41). If, however, vie write simply

(I + q? 1)2z 1

in (26).. we do obtain the Bryan solution. Obviously in so doing inu are

not approximating consistently.

The term producing this inconsistency can easily be tracud back to

earlier considerations. In (26) the term (l + 0 )2 comes from the terms

b2 3 , b 3 2 in (24) on letting - And in b2 3 , b3 2 the quantity 0 in

the term (1 + j1 ) comus directly from the term v w./R which vals intro-

duced originally in the expression for the work done by the lateral thrust.

The other tern of similar character introduced in thet saae expression,

nawly u wX/R dcos not survive here uinco its end product in (24), namely

A•T , varishos with X .

15. Purthor Discussion of Work Done by gxurnal Forces.

The computation of the work done by external forces warrants further

discussion. We have just seun that use of thu expression

u = vi - w2/21-A - v wI')dA , (18) bis

for the work done by the forces nurmal to the lati.ral curve.d surface of

the shell loads, apparently, to an inconsitiacy in compari6on with a result



obtainod by Bryan. The inconsistoncy arises not from an error but rather

from an order of magnitude disagreement..

The toxrs. u wx, v wa roefr thw 'inal pouitiun,, afftur deformation to

state B, of a point on the lateral surface back to its original position,

and so allow for a more coiTect integration than is usually the case

(in so far that a slope correction has been added) with respect to I over

the range O< x < L which defined the cylirner in state A. Nevertheless,

even when using non-linear strain components, this correction is rarely

used in Elasticity problems. Usually, uwvn though deformation ias taken

place, no allowancu is made for the cOian.-e in area of an eluont of our,

faco and integration is carried out ovir regions defined by original

unstrained boundary positions,

The Potential Energy Theorem, used in Elasticity and hore, states that

for an equilibrium state thu potbntial enzrgY U

U -E-,r Ti.uidS , -X, 2, 3, (27)

is stationary for hrbitrary wrintion in displacwrints, 1eres

E a iJ d , ij - 1,2,3

with

ai ' ij

via the stress-strain Is%, and T , ui 1 1,2,.3, are tho components of

* For the presunt ve refor all quantities to an orthogonal Cartesian
coordinato systomr soc Sokolnikoff "Thuory of Elasticity'.
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surfaces traction and of the corresponding surface displrcwwnn. The

portion of the surface dosiA'ated as S is that portion for wvhich

s 6T dS %O 0

Ih particular if surface Lractions are specified over the Unr-ire surface

of the body in ouostionj then 6Ti V 0, and SB t entire surface.

In theau various expressiona the usual summation convention is

understood, and in all applications the limits of integration are the

original dimensions of the unstressed elastic body.

If we formally apply thoorem (27) to the presenf. iroblear the term

corresponding to the "work done by the hydrostatic pressuret, on the lateral

surface of the shell is

U' .wjpw dA (28)
dr A

whore, as usual throughout this papur, U -a de dx, and A refers to the

curved surface area of the shell in state A.

An expression such as the last represents a conputation correct only

to the first order and, truly, tbe Kennard correction torme added to the

normal displacement w yields a quantity Udr which is more acturate than

is (28).

As an alternative to the Kentard corM4utation one could, of course,

compute the work done by the 1, leral throust by using thu formula

U - ,, p wdA
or A

where now, on writing d.A = dx ds, the rangc. of definition of x would be

0 < x < L -AL, where AL is thu shortening of tbh, cylinder on going from
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state A to statr P1 and is given by equ,

theALu L - cya.

Hsvar, if the quantity U'ifero used in this crannaction, then similar

limits of integration should also be used in all other computations throughout to

this work. This, of course, h~s not been done. equ;

It seems, then, that on retaining the terms von

ccq
u-'x , VWa

in tho expression for Udr, computation throughout the troatiwnt is not in

consistent in accuracy. fici

Again, in retaining the limits 0 < a < 2n R, the tvrm i2/2R in (18) is i

refers to the change in the length ds of the elemnt on going from state A sob

to state B. Thus, for accuracy consistent -Mith thst in all other surface

area computations this term, likuwise, should not be used. obti

16. Consequence of ds correction term. Vit]

den.s
Since in all thc foregoing work the term w2/2R has been retained it

is of interest to trace its consequences, and so discover the effuct of

ignoring it.

On substituting the dcfluction expressions (2) in the total potential

enara oxprossion (34) and performing the differantation with respect to

the arbitrary paranmters A, B and C, the term w2/2R leads exclusively to

the quantity (-I) in the coeffici unt of I in the a term of the det.rvinantal
1 33
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equation (39). The quantity persists, and appears in tho denominator of

the final simplified expression for the critical pressure of a reinforced

cylindur, (T8).
For the case of a cylinder with simple end supports, which amounts

to, setting thh3 ring paramoter term of(48) equal to zero, the simplified

equation of von kisus is obtainud with the -l retained in the dunominator'.

von Mises then drops the -1 in comnparison with turms m 2 andX2 in order to

compensate partially for his previous approximations,

Thus, if the tormi w/2R is not used, the effect would be that the -1 we

in the denominator of (48) would never appe'ar, so giving (on suitable modi-

fication) the final simplified von Mises result directly. Nevertheless, as

is well known the approximate von Mises result does not reduce to the Bryan

solution.

It is of intoreat to note that thu value of the critical pressure as

obtained from the Donnell equation for circular cylindrical shells agrees

with the simplified von 11isus rusult; the -1 term does nut appear in the

denominator.

wil

Moc

AJ.E
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DiscuEssion of Approximations mado In Pibal numbur L167.

1 The completu oxpansion of the ganaral det•reinant (39) leads to a

cubic equation in 1' 10 2 and k. As an approximation thu equation was

linearized and took the form

CI + C2k a C3 (P + C402

We now discuss the validity of neglecting the terms containing pollers of

and k of order hieher than unity.
I -

13y definition

k - (h/R2/1 ,

and

.2 2 - Rp/K - (pp,,)(I4'h),.-v 1 )

By dofinAition of a thin sh:ll, thx thickaose h must be small compared

with the radius R, i.. (h/) << 1. Honco

k 2 -(/ty4 k «<1.

Similarly

k 3 <<k 2

The buckling prossure p .mst always be small compared with the

moduluvi of Uisticity E of the matorial of which th• shell is constructed.

Also, for' the rnigo of shull dimunsioins considered in this work, the



P

ratio (pA).(R/h) cT l n thio iy~iiorical uxaij.nlu cquotorJ -'n Pibal number 167

the fisrurtbB vierc,

Pcrtý970 P.-s1

together with

k 3-068 x107

45 4.1847 x10-3 (fiomZ)

,z 2-1,24 x1)-3

which Justifies the lin-oari~.ation for this caso. bindlar resul.ts follow

f or the rarvf*.;s of shell. atnd framo Vomotry -hicl, IYoyiwed 1th, bases

of charts prosesnted in subsequont reports.

2. In tho boa.y of' thu r.ýport it waas statud that tho t~nns v r, 9,

v2//+ and u2.4 in (20) xhjn intcegratcd 1ev to te.rltis of ozi',r hi-jher than

thoc iven by the r:indrof the torms tandrr thL intu;gre).. Consequently

they %ore ipnorcd.

Considor th,; t,.rin w. u,/2R in (20). It can bc Ovivi that this quantity-

leada only to the tarm 0 X/2 in th- o: nt a arid a o3? the grerw-rsI.
1 13 31

dtaterminant. (397). Upon csxpansicon of the determi-*-:r~t this te-rm contributes

to C 3, that is the cooeffiý-iant of 45 1 The. minors of thv tarrms a 13and a 3

show that thu contributions to C 3by this term aro of~ or~lor m2ý , m4 X kc,

in2 X 3 k,, with oth.3ar quantities9 of lonuer orde~r in ni and X~ . On the other

hand., exa.-ination of i%' vieholu tuxprcssicn f or C 3 (Tdc) of Pib.al numbtr 167,

shows that tur;.:s ox-1st of artie:r in 2 7, 4 , r 4 X 2 ,r , ;,-Ah othur termss
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ratio (p/r4(R/h) << 1. In tho nrrnorice]. uxam.plci ruot,-.d in Pibal number 167

the fi,,urbs w~er

h/F. 0,006068,

togvther wiith

k 3-068 x 106

4-847 x10-3 (f'rom Za),

2-.424 x ).f-3

wihich justifios the linaarimu:tion f'or this easu. bi.Tdlar rosults follo

for the ranýF.is of sholl an6 frame geometry whlich frmied thiz bases

of charts pruse~nted inj subsequeint ruports.

2. In tha bo~iy of thts r-.port At vas statud that tho t-.nns w vi P

v2/4 and u2/4 in (20) w~hen intagrated lec~ to t.;rl2is of or~eor hi.ýhor than

thosc given byr the re:.:ui-ndrr of the torms undefr thu ixJitogra1. Conaequuntly

they %oer ipnox--d.

Consitder thk; t,.rrn w u./2R in (?0). It can b,; Oron that thia quantity

leada only to the ttorm iD X./2 in t~h-z oL'.):-snts a and a of~ tho gert~ra1
'I 13 31

determinant (T9-). Upon oexpansion, of the deteri-Minat, this tcerra contributes

to C 3, that is the coofficaient, of 4., a The mainors of the terms a 13and a 3

show that the contributions to C 3by this torm arn of orclor zA P in4 X k

m2 X 3 k., voith oth-ir quantit~ius of l.uur ordor in mi and X . On the other

hand,. ijxut;-ination of ffiu -holf- ueprcssion for C . , ( 7.c) of Pis.al rsiabur 167.,

shovis thrit tor;.!s oxist of orc-er m 2 X 42 r14 X 2 , 16 , A~th oth,;r turms
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in m end X of loir order. It will be shown in th.j foJlowing that the

latter terms, mi 2 4 m m4XZ *m6 , ar tilone dominant in C .

Similar considerations will also show that the terns v/4, UN/4

lead to torms in C of lw,.•r order in r. and A than the so-callod dominant
3

termns.

To show that the highar powra of in end A dominatW in the expression

for C 3 , and ind.od in tho expressicns for C0 , C2 , and C4 as well, "'

rncall the defrinitions of in and A . Thus, m is tho numbor oi circumforuntial

half-waves, while X w (nnR)/L, %here R/L is the radius of the shell divided

by the distance betmeen reinforcing rings, and n i• thu number of longitudinal

half-waves.

For shells of the type considered hf-ro, i.e. with closely spaced

rings, the i/L ratio is of the order of 2 to 6. In the oypreasion for C

(Tla) of Pibal number 167) the first tweo tirms on th.v riht hand side con-

tain AX4 twrias, while th; remaining terms contain A raised to a lower

powor. Consoquently, all but: the first two terms can be ncalucted,

Similar considerations, and the f.;ct that k<.< 1, indicate that for

C ý, C. and C,, all terms other than the first can bu neglected.

1For shells with large R/L ratio it would be reasonable to expect

the number m of circumforentinl lobes to be lrae. Thuj L.;rms containing

the higher powurs of uk would dominate in the expressions for the coeffi-

cients C| ,.... C, . It so h.pp&.ns that th.3 terms already negluct-d in vir-

tua of t.a forugoing discussion are also the, t,.naa of lowur powers of m than

those r .tixiud.

We conclude, therefore, tbat the final expressions for C ,.... ,
1 4

which can safely be used for computing the critical prosvire are 3s given

by (Z7) of Pibal im-mlr 1.67. ;'4ot_ that these expressions arm only valid

for lnrg. values of %.
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APPIFDIX Ij.

Discussioin of ApDroximaticnii made to the Korrard expr s.

1. In the body of thi report it was stated that, correspond&ng to neglect

of the Pibal terms m u /R, vl/4, u2/4, the Kennard terms u w./R and

v 1s/R can Likewise be neglected.

Consider the term u w.JR in the integral of (19). As was stated

earlier, this term lnads to quantities in the coefficient C which are7

negligible compared with the results of other terms in that integral.

It r in easily be seen that thu, quantity u wX/R leads to thu term !5

in the elements b 3 and b31 of the general determinsnt (24). As in Appendix

I, we again consider the minors of those two elaments." They lead to terms

of order ma2 X , m4 X k, m2 kk together with lower order terms. Examin-

ation of the total eaxeassion far C7 (ste below) shows the dominant terms to

be of order m27X 4 9 m4 %ý and m6 . r'o conclude that omission of the

term u Vx/R negligibly affects the buckling pressure.

2. It was shown in the body of the report that the quantity .b in the

elements b 3 and b3 2 of the determLiant (24) usat be noglected in order to

arrive at Bryan' s result for the buckling of a cylinder of infinite length.

This quantA ty can b3 ehwwn to result from the trim v ws/R in the integral of

(19). However, even if the turm was rtained it oculd only lead to non-

dominant terms inthb expression for C •7

SThu expressions for C , C6 and 0 7, iysulting from the expansion of

the determinant (24 ), arts

(51- o.- v) /2) jjX 4 (1_ V2) + R 0(m + X2Y2 + RRH( 2m

+(2 2(+ X2R, - ,X) 2 o(J-v
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- (PI2 +V% 2)2%)2(1l/,MZ)RA + V+ O!)~n2 +0)2 + 1-2..- 2- 2 v Xa

A AC

+ (Mn2 +X 2 )2 + X2 R},

7.ý 12 M 2,,2? ( 2 + V)X2 )

+ k(m2 -1. +Xý4/2) (m2 + XZ)2 _2ni2 X2 (2m2.+i 2 X2 -1)

+ [2/(2.- V)i[un-+ --k! (1- V)(1 + k)]JR( 21+

T~he various eirmlifioations of those coofftc~isns ar the s~r, e as

thbose outlifl4.d in §2 of Appendix I.
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RemaininR Diffoernces botwven Pibal number 167 :--'id the present report.

Tt was statud in tht body of thu roport that assotiaily the differences

between Pibal nurmbur 167 and thu pruasent report rocuee to showing that (19)

and (20) are virtually the same nuxmrical1y, that is

(19). - (20) - 0

AMftr accounting for sevoral of the terms in this equation the remaining

difference D was shown to be

D -(1/2)Rp (w2 + w V 2%/R) dA
A

2PnR L 2
(l/2)Rp J X (w + W Ws - 2w/) dx d. (a)

0 0

Tho dfl,-ction function v asaumed in Pibal number 167 was

-C coB 0 sin'2•&- " (b)

Consider the term I on the right hend side of (a). Using (b) It can bo

rewritten as

2,lR L 2R L
X J' (w/R) dxds f X co a ain(Xx/)dxda-o,
o 0 R o o

This term would also b,, zvro if w woru any deflection function of the

form

w - X(x) cos (si/R)

w - X(x) sin (ms/R)

where X(x) is any suitably continuous function of .
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next, consider thu remrinine two terms of (%). For the assumed

function (b) we have

18 AA d

so that thu two terms cancel each other. This result is also true for

.any other duflection functions % of the form (c).

We conclude, therefore, that for any w of the form (c), the final

results of this report coincide numerically with the final results given in

Pibal number 167.
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APPIMUD. IV

PLckI:!na__o a Cr1indrir nndor Uniform Pressure

Note by E. H. Knnord

I. Fundsmuntals

Coordinates on modian surfaces

x,, a ay , a r radius,

q - anglo about axis.

By assumptions of Salerno and Lovir, (PIBAL 167), in uquilibrium

state just before buckling th7j strobsi)8 are, P denoting "axial pressure,"

a X - P. " 0no, -2ap/2, =-ap/h.

In comparison with those, tho radia streas iu njvuocted.

Hence equilibritum strains Just bofore buckling are

e - (11E) (--. + v vp/h)," -s ' (1/E)( VP - SPAh).

No' the Ulstic cnurgy willJ contain certiin terms involving -.Liy the

equilibrium strsins, othersa involving only the adr!od buckling straina, and

finolly cross products botw.:;on these ttuo 1),rt•il strains. Buckling is con-.

trolled by terms in the ,porey -ind in the external work (or in the "potential")

that ore o usdrAtic in the buckling dinpLacumnts or th.,r derivativos. Hence,

in ganoral, turns in the buckling, strains t),Ut are quadratic in this sense

must be rotainsd, since in thr4 croa products they make a quadratic con.-

tribution to the a.stic energy. flowver, quadratic strains cotaining

ux(i.o. 0 u/d x), vs( v/ dx) or v n•.ed not be retained, for squares of
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theas quantitias occur in ohurgy teraw aris.iig, from, tho buckling strains

alone, and in comparison with thbse terms 3ny cross products quadratic

in u., vs, or v will contain also an equilibrium strain &s a very so1af"

factor, so that such cross products ore nigligible for practical purposes.

It is othorwise with r. and ws a

An adequate calculation of the strains after buckling is, thorefoko).

1/2

x X0

e -[(+ F. + v - w/a) 2 ds 2  + .82 ds2  as-o ,
0 so s a

fhenoe

C a +u +1,i/2, 2 e + vs -v /a+ 2
X 10 1 1 6 80 8

Let U1 - extensional elastic onerg, Es - E/(1 Vi).

Then

U, . (hE 5/2)qj"4(E 2+ e2 + 2 Vi C dx d1 8

The value of U, just before buckling is

(1a/2)j'ex;+ s+ 2 • V so) dx do.

The increase in U1 by buckl.W, or A U1 is, tly.roforim, through turms of 2d

order in u and w,

A (hEs/2)sW,"[ c (2u + 2 v v-2 V vs/n+ -* 2+ W2)

+C(2 " +v -,2w/a+v w V +)

+ v (+h V / , o( 2v +2v Y. 2 v s- 2V a dxdo.
SO ' S
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II. Special casu: w - 0 at 6nds,

Let it be assiumid that the ends of th.) !'linwr rearain plano.

Then

JZu, dxds w~j"(uL j-U0 )ds, UL u atx L s

uo = U at x 0 ,

2 lLa
v dxds jdx J' v doa=0

8 o

Hence, substitutinr. for P- and e

A U, (r.2 +Xv2 + v1fct'+ 2 vu v- 2 u w/a

AU c2)~ x~ a x 3

,- 2 vo,/a)dyds + ap,,"(i/a - MV2)d:ds

-.hVZ w dxas -hP we -) U)da.2 xo L'0

[For comparison with PIBAL 167, change notatiuo tkust

* S i

[Term in Ea equals lot 3 terms of PIBILL 167-(3); last term'in (3) is

shear enfurgy, not h-rte cansidurod. Tenas in p and P in Au, represent

cross-product toreu which are omittud in PIBAL 167.]

York .nd forces. If wb 0 at the ends (but not oth:irwise, since

2d-order terrw in the diSp13Czc.nt must be includud)

W1-hP o(uLrU)do

(provided P is uniform around t.ht,. shell),
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Here P is assunvd constant, during the displaco ..ent.

[PIBAL 167 has, from (20),

W uV 3  2 +/)J fuV 2+ va2)Cdgd.

The deduction of (20) is not understood.]

Work bY radial pressure Rp

This work equals p timis decreape in volume.

If w = 0 at the ends, effects of end displacotcnts can bo ignored

as arising from third-ord.hr changes of volume, since FG and FIG' are them-

selves of 2d order in u, "w. (Fig. 3).

Any radius is shortenod by E[w] or

1--uw -- VW
,,X 8

Hence decrease in vohum is, through quadratic torms,

2na
"n W 41 dx-j dx W +i(a Uw + vw -)(a w+uw.vw)/aJda

.dxJ' (v - w2/2a -u wx - v wa) ds

and work is

21~ ~ /2 uv -vv)dxds ar

[PIBAL l'67 has in (25)

r,2 .deduio i n we2l i u w-saw %o. 2)dxds.

The deduction is not viell understood.]
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Ovurall emorison with PIBAL 167.

For an overall comparison, assumu, as in tho applications, that P

is due to p on end closures, so that (nearly anough)

P- sp/2h . (J)

Write ( AUI)b for the part of AUa in (a ) not containing P or p. this

part agrok5tng with PIBML 167.

Then, from ( a ) ( c ) (y)c

. W 2 V. 2 U1R •1

Au, U I WI.- - W2 -(AU,)b+apJW(2--A- . -+ --A÷+ ---.)d!di

[PIBAL 167 would get, from AU, - (AU, )b and ( y', %'),

AUI - 1 w -W2- (AU)b

+ ,i>.'(- + --J+• .2

Thu first-order (1) t.arm appoc ring hrarm is oliminat-d by the spoclal.
2n

asmumption that X wdq .O .-
0
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FIG. 1 COORDINATE SYSTEM AND
DISPLACEMENTS FOR CIRCULAR

CYLINDRICAL SHELL

pR -A dx. i8 pR

X -,A' - 2

uAKduA

FIG. 2 AXIAL DISPLACEMENTS OF
LONGITUDINAL ELEMENT OF SHELL

Ic t,., W,

r,wIV D

FIG. 3 DISPLACEMENT OF SHELL
IN LONGITUDINAL PLANE


